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We determine sufficient conditions on positive weights W and V such that there
exists continuous, strictly increasing functions 8 and 9 on [0, �) such that 8(0)=
0=9(0) and

8 \&Wf &�

| f� (0)| + 9
&Vf� &�

| f (0)| +�1

whenever f: R � R is a continuous integrable function. We also give an example
that shows the optimality of our conditions. � 2000 Academic Press
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1. INTRODUCTION

The classical uncertainty principle roughly states that a function f and its
Fourier transform f� cannot be both highly localized: there exists a constant
K such that for any real numbers t0 , !0 , and f # L2,

& f &2
2�K &(t&t0) f &2 (!&!0) f� &2 .

Refinements have been obtained for various function spaces. For instance,
Benedetto and Heinig obtained the following weighted uncertainty principle
inequality: if 1<p�q<� and positive even weights u, v defined on R
satisfy

sup
s>0 \|

1�s

0
u(!) d!+

1�q

\|
s

0
v(t)&p$�p dt+

1�p$

<�, (1)
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then there exists a constant C, depending only on the supremum above
such that

& f &2
2�C \|

�

&�
|tf (t)| p v(t) dt+

1�p

\|
�

&�
|!f� (!)|q$ u&q$�q(!) d!+

1�q$

(2)

for any function f from the Schwarz class. For example, see [1]. We also
refer the reader to [2] for an excellent survey on the uncertainty principle.

The techniques used to prove inequalities like (2) involve integration by
parts, Ho� lder's inequality, Plancherel's theorem and their generalizations.
However, it is unclear how these can be used to obtain a reasonable version
for L�. The purpose of this note is to determine sufficient conditions on
positive weights W and V so that there exist strictly increasing, continuous
functions 8 and 9 on [0, �) satisfying 8(0)=0=9(0) and

8 \&Wf &�

| f� (0)| + 9
&Vf� &�

| f (0)| +�1 (3)

for any continuous integrable function f: R � R.
The idea of the proof is simple: the Poisson summation formula is

applied to obtain sign changes of the function

%f (x) :=
2?
|x|

:
k{0

f (2?k�x)&|
�

&�
f (u) du.

2. MAIN RESULTS

We define the Fourier transform of f by

f� (|) :=|
�

&�
f (t) e i|t dt.

Theorem 1. Let W and V be even real-valued functions defined on R,
nondecreasing and strictly positive on (0, �) such that

|
1

0

dt
W(t)

=�=|
1

0

dt
V(t)

, (4)

|
�

1

dt
W(t)

<�, |
�

1

dt
V(t)

<�, (5)
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and such that for some constants C0 , C1

W(2t)�C0W(t), V(2t)�C1V(t) (6)

for all real numbers t. Then there exist strictly increasing, continuous
functions 8 and 9 defined on [0, �) satisfying 8(0)=0=9(0),

lim
x � �

8(x)=�= lim
x � �

9(x),

and such that

8 \&Wf &�

| f� (0)| + 9
&Vf� &�

| f (0)| +�1 (7)

is satisfied for all continuous integrable functions f: R � R.

Conditions (4) and (5) ensure that the functions

H(u)=\2C0 |
�

2?u

ds
W(s)+

&1

and G(u)=\C1

? |
�

u

ds
V(s)+

&1

, u>0

are bijections of (0, �) onto itself, a requirement for the construction of the
functions 8 and 9. The proof of Theorem 1 shows that these functions
may be taken as follows: 8(t)=H&1(A: t), 9(t)=G&1(B: t) where A:=
(:C0+1)(2:&1)&1, B:=(2:+1)(1&:)&1 and : is any constant such that
1�2<:<1. Taking W(x)=|x| a and V(!)=|!|b with a>1 and b>1, we
obtain the following corollary:

Corollary 1. Given a>1 and b>1, there exists a positive constant C,
depending only on a and b such that

\&xaf (x)&�

| f� (0)| +
b&1

\&!bf� (!)&�

| f (0)| +
a&1

�C,

whenever f: R � R is an even continuous and integrable function.

We observe that the conditions W(0)=0=V(0) (implied by (4)) are
essential for a non-trivial L� uncertainty principle. Indeed, if W(0) V(0){
0 and f (0) f� (0){0, then

&Wf &�

| f� (0)|

&Vf� &�

| f (0)|
�W(0) V(0).

The example below shows that the conditions (4)�(5) are essential for
the validity of Theorem 1.

243UNCERTAINTY PRINCIPLES



Example 1. Let W(x)=|x| and V(!)=!2. Then there exist no increas-
ing, continuous functions 8 and 9 on [0, �) with 8(0)=0=9(0) and
such that (7) is satisfied for all continuous integrable functions f: R � R.

Proof. Let an>bn>0 for n=1, 2, 3, ... with both an and bn tending to
infinity and bna&1

n tending to zero. Let Xn and Yn denote the characteristic
functions of the intervals (&an , an) and (&bn , bn) respectively. Define hn to
be the convolution of Xn and Yn . Then

hn(x) :=|(&an , an) & (x&bn , x+bn)|,

where | } | denotes Lebesgue measure. We observe that hn is an even,
non-negative and compactly supported continuous function. Furthermore,
hn(x)=2bn if |x|�an&bn , hx(x)=an+bn&|x| if an&bn�|x|�an+bn ,
and hn(x)=0 if |x|�an+bn . Moreover

h� (!)=4!&2 sin(an!) sin(bn !).

The global maximum of |x| hn(x) is attained when an&bn , �|x|
<an+bn . Since bna&1

n � 0, the derivative of |x| hn(x) is non-vanishing on
the interval an&bn<|x|<an+bn , for n sufficiently large. Hence, for these
values of n, we have

&xhn &�

|h� n(0)|
=

2bn(an&bn)
4anbn

�
1
2

. (8)

On the other hand, we have for all n,

&!2h� n &�

|hn(0)|
�

2
bn

� 0. (9)

The inequalities (8) and (9) show that there exist no strictly increasing,
continuous functions 8 and 9 on [0, �) with 8(0)=0=9(0) and such
that (7) is satisfied for all continuous integrable functions f: R � R.

Q.E.D.

3. PROOFS

We shall use a variant of Wiener's criterion for the validity of the Poisson
Summation Formula. See for example [3].
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Lemma 1. Let W be an even function defined on R, strictly positive and
non-decreasing on (0, �), and such that

|
�

1

dt
W(t)

<�.

If f: R � C is a continuous function such that Wf # L�, then for any nonzero x,

2?
|x|

:
�

k=&�

f (2k?�x)= lim
N � �

:
N

k=&N \1&
|k|

N+1+ f� (kx). (10)

Proof of Lemma. The monotonicity and integrability of 1�W on [1, �)
imply that for each nonzero x, ��

k=&� f (t+2k? |x|&1) converges uniformly
for |t|�?�|x|. Indeed, if |t|�?�|x|, then |t+2k? |x|&1|�(2 |k|&1) ?�|x|.
In turn, this implies, for |k|�2,

| f (t+2k? |x|&1)|�
&Wf &�

W((2 |k|&1) ? |x|&1)
�

2? &Wf &�

|x| |
Ik

ds
W(s)

,

where Ik denotes the interval [(2 |k|&3) ? |x|&1, (2 |k|&1) ? |x|&1]. The
integrability of W&1 on ($, �) for any $>0 completes the proof of our
claim that ��

k=&� f (t+2k? |x| &1) converges uniformly for |t|�?�|x|,
given any fixed nonzero real number x. Hence, the function

t � :
�

k=&�

f (t+2k? |x| &1)

is continuous on R for each x{0. Equation (10) follows by applying
Feje� r's theorem at t=0. Q.E.D.

Proof of Theorem 1. Let f: R � R be a continuous integrable function.
For the moment, we assume f (0) f� (0)<0. For nonzero x, define

%f (x) :=
2?
|x|

:
k # Z*

f (2?k�x)& f� (0) (11)

where Z* denotes the set of nonzero integers. Using the monotonicity of W
and the growth condition (6), we observe that for any h>0,

h
W(h)

�
C0 h

W(2h)
�C0 |

2h

h

dt
W(t)

.
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Thus, for any h>0, we have

:
�

k=1

h
W(kh)

� :
�

j=0

2 jh
W(2 jh)

�C0 |
�

h

dt
W(t)

. (12)

The first inequality in (12) is obtained by decomposing the set of positive
integers into the disjoint sets [2 j+k : 0�k<2 j], j=0, 1, 2, ... . Multiply-
ing (11) by f� (0), a real number, we obtain

f� (0) %f (x)�
2?
|x|

&Wf &� | f� (0)| :
k{0

W(2?k�x)&1&| f� (0)|2.

Combining this with (12) yields

f� (0) %f (x)�2C0 &Wf &� | f� (0)| |
�

2?�|x|

ds
W(s)

&| f� (0)|2. (13)

We observe that conditions (4) and (5) imply

lim
s � � |

�

2?�s

dt
W(t)

=� and lim
s � 0+ |

�

2?�s

dt
W(t)

=0

respectively. Moreover, the integrability of W&1 on ($, �) for any $>0,
together with the fact that it takes real positive values there, implies that

s � |
�

2?�s

ds
W(s)

is a strictly increasing continuous function on (0, �). Hence there exists a
unique positive x0 satisfying

| f� (0)|
&Wf &�

=2C0 |
�

2?�x0

ds
W(s)

.

With x=x0 , the right-hand side of (13) becomes zero. This implies

f� (0) %f (x)<0, whenever 0<|x|<x0 . (14)

Next, we combine the Poisson Summation Formula (10) and equation
(11) to obtain an alternative expression for %f :

%f (x)= lim
N � �

:
1�|k|�N \1&

|k|
N+1+ f� (kx)&

2?
|x|

f (0). (15)
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Applying (12) with V in place of W and C1 in place of C0 yields the follow-
ing inequality:

}x :
1�|k|�N \1&

|k|
N+1+ f� (kx)}�2C1 &Vf� &� |

�

|x|

dt
V(t)

.

From (15) and the assumption f� (0) f (0)<0, we arrive at the inequality

|x| f� (0) %f (x)�2? | f (0) f� (0)|&2C1 | f� (0)| } &Vf� &� |
�

|x|

dt
V(t)

.

Again, we observe that

lim
s � 0+ |

�

s

dt
V(t)

=� and lim
s � � |

�

s

dt
V(t)

=0

and s � ��
s

dt
V(t) is a strictly decreasing continuous function on (0, �).

Hence, there exist a unique positive x1 such that

? | f (0)|

&Vf� &�

=C1 |
�

x
1

dt
V(t)

.

Moreover, we have

|x| f� (0) %f (x)>0, whenever |x|>x1 . (16)

Comparing (14) and (16), we conclude that the sets [x # R : |x|>x1] and
[x # R : 0<|x|<x0] must be disjoint. Hence x0�x1 .

Our discussion shows that the mappings H and G defined by

H(u)=\2C0 |
�

2?u

ds
W(s)+

&1

and G(u)=\C1

? |
�

u

ds
V(s)+

&1

, u>0,

are bijections of (0, �) with itself. Moreover,

H(x&1
0 )=

&Wf &�

| f� (0)|
, G(x1)=

&Vf� &�

| f (0)|
.

Thus the inequality x0�x1 is equivalent to

H&1 \&Wf &�

| f� (0)| + G&1 \&Vf� &�

| f (0)| +�1 (17)

where f : R � R is continuous, even and integrable with f� (0) f (0)<0.
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It remains to consider functions f such that f (0) f� (0)>0. Fix : such that
1�2<:<1. Given such an f, define F(x)=:f (x�2)& f (x). Then F� (!)=
2:f� (2!)& f� (!) and

F(0) F� (0)=(:&1)(2:&1) f (0) f� (0)<0.

Applying (17) to F and observing that

&WF&��(:C0+1) &Wf &� , &VF� &��(2:+1) &Vf� &�

and that H&1 and G&1 are increasing functions, we obtain

H&1 \A:
&Wf &�

| f� (0)| + G&1 \B:
&Vf� &�

| f (0)| +�1 (18)

where A:=(:C0+1)(2:&1)&1 and B:=(2:+1)(1&:)&1.
Finally, we define 8(t)=H&1(A: t), 9(t)=G&1(B: t). Since A: and B:

are both greater than one, (17) shows that (18) also holds whenever
f (0) f� (0)<0. Trivially, (18) holds when f (0) f� (0)=0. Q.E.D.

REFERENCES

1. J. Benedetto, Frame decompositions, sampling, and uncertainty principle inequalities, in
``Wavelets: Mathematics and Applications'' (J. Benedetto and M. Frazier, Eds.), pp. 247�303,
CRC Press, Boca Raton, 1994.

2. G. B. Folland and A. Sitaram, The uncertainty principle: a mathematical survey, J. Fourier
Anal. Appl. 3 (1997), 207�238.

3. J. P. Kahane and P. G. Lemarie� -Rieusett, Remarques sur la formule sommatoire de
Poisson, Studia Math. 109 (1994), 303�316.

4. Y. Katznelson, ``An Introduction to Harmonic Analysis,'' Wiley, New York, 1968, reprinted
by Dover, New York, 1976.

248 BALILA AND REYES


	1. INTRODUCTION 
	2. MAIN RESULTS 
	3. PROOFS 
	REFERENCES 

