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We determine sufficient conditions on positive weights W and V such that there
exists continuous, strictly increasing functions @ and ¥ on [0, c0) such that @(0) =

0=%(0) and
IWf 1l \ oy 1V oo
¢;< |£(0)] > v [£(0)] )Zl

whenever f: R— R is a continuous integrable function. We also give an example
that shows the optimality of our conditions.  © 2000 Academic Press
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1. INTRODUCTION

The classical uncertainty principle roughly states that a function f and its
Fourier transform f cannot be both highly localized: there exists a constant
K such that for any real numbers #,, &,, and fe L2,

LAIBSK Nt —to) fll2 (E=&) fla.

Refinements have been obtained for various function spaces. For instance,
Benedetto and Heinig obtained the following weighted uncertainty principle
inequality: if 1 <p<g<oo and positive even weights u, v defined on R
satisfy

1/s 1/q s 1/p’
| u(f)dé) <j v(zrp'/pdr) <o, (1)
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then there exists a constant C, depending only on the supremum above
such that

1/q'

[e¢) 1/p o R , ,
(" worana) (7 e g a) e

for any function f from the Schwarz class. For example, see [ 1]. We also
refer the reader to [2] for an excellent survey on the uncertainty principle.

The techniques used to prove inequalities like (2) involve integration by
parts, Holder’s inequality, Plancherel’s theorem and their generalizations.
However, it is unclear how these can be used to obtain a reasonable version
for L*. The purpose of this note is to determine sufficient conditions on
positive weights 1 and V so that there exist strictly increasing, continuous
functions @ and ¥ on [0, o) satisfying @(0)=0= ¥(0) and

W o v,
¢< 7(0)] )W /0] >>1 (3)

for any continuous integrable function /i R — R.
The idea of the proof is simple: the Poisson summation formula is
applied to obtain sign changes of the function

25 pankin) — [ St du

0 =
(%) Ix[ Zo

2. MAIN RESULTS

We define the Fourier transform of f by

F(w) ::foo 1(1) e dt.

— 0

THEOREM 1. Let W and V be even real-valued functions defined on R,
nondecreasing and strictly positive on (0, c0) such that

==l g

©  dt © dt
\L W<OO, L W<OO, (5)
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and such that for some constants C,, C,
W(2t) < Co W(1), V(2t) < C, V(1) (6)

for all real numbers t. Then there exist strictly increasing, continuous
functions @ and ¥ defined on [0, oo0) satisfying @(0)=0= ¥(0),

lim &(x)=o00= lim ¥(x),

X — 00 X — 00

and such that

[ WFl o ZAP
~ /1
(D< 700 >W 0] >> (7

is satisfied for all continuous integrable functions f: R — R.

Conditions (4) and (5) ensure that the functions

o gy \7! (@ ds \7!
H(u)=<2C0L W(SS)> and G(u)=<ij V(”;)> . u>0

are bijections of (0, c0) onto itself, a requirement for the construction of the
functions @ and ¥. The proof of Theorem 1 shows that these functions
may be taken as follows: ®(¢)=H(A4,t), Y(t)=G(B,t) where 4, =
(xCo+1)(2u—1)"", B,= (20 +1)(1 —a)~" and « is any constant such that
1/2<a<1. Taking W(x)=|x|* and V(&) =|¢|® with a>1 and h>1, we
obtain the following corollary:

COROLLARY 1. Given a>1 and b > 1, there exists a positive constant C,
depending only on a and b such that

() (A e

whenever f: R — R is an even continuous and integrable function.

We observe that the conditions W(0)=0= V(0) (implied by (4)) are
essential for a non-trivial L* uncertainty principle. Indeed, if W(0) V(0) #
0 and £(0) £(0) #0, then

AP
A 1)~

W(0) V(0).

The example below shows that the conditions (4)—(5) are essential for
the validity of Theorem 1.
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ExaMmpPLE 1. Let W(x)=|x| and V(&)= &2 Then there exist no increas-
ing, continuous functions @ and ¥ on [0, o) with @(0)=0= ¥(0) and
such that (7) is satisfied for all continuous integrable functions f: R — R.

Proof. Let a,>b,>0 for n=1, 2, 3, ... with both 4, and b, tending to
infinity and b,a, ! tending to zero. Let X, and Y, denote the characteristic
functions of the intervals ( —a,, a,) and (—b,,, b,) respectively. Define £, to
be the convolution of X, and Y,. Then

h(x):=|(—a,,a,) (x—>b,, x+b,),

where |-| denotes Lebesgue measure. We observe that /£, is an even,
non-negative and compactly supported continuous function. Furthermore,
hn(x) :2bn if |X| <an_bna hx(x) :an+bn_ |X| if an_bn< |X| <an-i_bn’

and h,(x)=0 if |x| >a,+b,. Moreover
h(&) =4~ sin(a,¢) sin(b,E).
The global maximum of |x|#4,(x) is attained when «,—b,, <]|x|
<a,+b,. Since b,a, ' — 0, the derivative of |x| h,(x) is non-vanishing on

the interval a,—b, < |x| <a,+ b, for n sufficiently large. Hence, for these
values of n, we have

Hth Hoo _2bn(an_bn) 1

~ = <. 8
|7,,(0)] 4a,b, 2 ®)
On the other hand, we have for all n,
1%, o _ 2
—<——0. 9)
|7, (0)] b,

The inequalities (8) and (9) show that there exist no strictly increasing,

continuous functions @ and ¥ on [0, oc0) with @(0)=0= ¥(0) and such

that (7) is satisfied for all continuous integrable functions f: R — R.
Q.E.D.

3. PROOFS

We shall use a variant of Wiener’s criterion for the validity of the Poisson
Summation Formula. See for example [3].
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LEMMA 1. Let W be an even function defined on R, strictly positive and
non-decreasing on (0, c0), and such that

j"o dt -
—— <
1 W)
If f: R— C is a continuous function such that Wf € L™, then for any nonzero Xx,

2 N
_Z f(2kn/x) = hlnmk y <1—N|+|1> Fkx). (10)

Proof of Lemma. The monotonicity and integrability of 1/W on [ 1, o)
imply that for each nonzero x, Y7°_ _ f(¢+2kn |x| ') converges uniformly
for |¢| <n/|x|. Indeed, if |7| </|x|, then |t +2kn |x| 7! = (2 |k| —1) n/|x]|.
In turn, this implies, for |k| =2,

(1 +2kn |x] )] < W5l 2 HWwaf ds
b

W=D lx™) " x|  W(s)’
where I, denotes the interval [(2 |k| —3) z |x| ™', (2 |k| —=1) = |x| ~']. The
integrability of W~! on (J, c0) for any J >0 completes the proof of our
claim that 3° __ f(t+2kn |x|~"') converges uniformly for |¢|<n/|x],
given any fixed nonzero real number x. Hence, the function

- i f(t+2kn |x] 1)

k= —o

is continuous on R for each x#0. Equation (10) follows by applying
Fejér’s theorem at 1=0. Q.E.D.

Proof of Theorem 1. Let f: R— R be a continuous integrable function.
For the moment, we assume f(0) f(0) <0. For nonzero x, define

~

Y. J(Q2nk/x)—f(0) (11)

| | keZ*

0r(x):=

where Z* denotes the set of nonzero integers. Using the monotonicity of W
and the growth condition (6), we observe that for any 4> 0,

ho_ Coh _ szh dt

W(h) ~ W(2h) n W(1)
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Thus, for any 4 >0, we have

0 0 ' o) df
2 W(k < LW 2’h) ), ity (12)

k=1

The first inequality in (12) is obtained by decomposing the set of positive
integers into_the disjoint sets {2/+k:0<k <2/}, j=0, 1,2, ... Multiply-
ing (11) by £(0), a real number, we obtain

F(0) 0,() < I WF 1L 1FO)] Y W2ak/x) " =1 7(0)

| | k#0

Combining this with (12) yields

1(0) 0,(x) <2C, | WS | 1/(0)] —1/(0)2. (13)

27/1x] W( )

We observe that conditions (4) and (5) imply

© dt © dt
lim J —— = and lim j — =0
§— 00 Y2r/s W(t) s—=0% Jog/s W(l)

respectively. Moreover, the integrability of W~! on (J, o) for any 6 >0,
together with the fact that it takes real positive values there, implies that

S—>JOO ds
2nss W)

is a strictly increasing continuous function on (0, o0). Hence there exists a
unique positive x, satisfying

|/ (0)] © ds
=2 .
IV oo Ln/xo W(s)

With x = x,, the right-hand side of (13) becomes zero. This implies
£(0)0,(x)<0,  whenever 0< |x|<x,. (14)

Next, we combine the Poisson Summation Formula (10) and equation
(I1) to obtain an alternative expression for 0,:

O,(x)= lim Y <1—||>f( n-Zp0. (s

N> | id<n N+1 | x|
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Applying (12) with V' in place of W and C, in place of C, yields the follow-
ing inequality:

P © dt
<2Vl | s

v 3 (135 ) e

1<|kl<N

From (15) and the assumption f(0) f(0) <0, we arrive at the inequality

© dt

x| 7(0) 0,62 27 110) f(O) =2€, 1O 171 [ 205

Again, we observe that

. o dt . © dt
Slir(r)l+ L WZ)ZOO and slingo L WI):O

and sef?% is a strictly decreasing continuous function on (0, c0).

Hence, there exist a unique positive x; such that

m |£(0)] c, jw dt

IVl

x V()
Moreover, we have

x| £(0)0,(x)>0,  whenever |x|>x. (16)
Comparing (14) and (16), we conclude that the sets {xe R: |x|>x,} and

{xeR:0<|x| <x,} must be disjoint. Hence x, < x;.
Our discussion shows that the mappings H and G defined by

o s -1 Cl © ds -1
H(u)=<2COLWW(S)> and G(u)=<nL V(S)> . u>0,

are bijections of (0, oo) with itself. Moreover,

W Il
H(x, )= 70)] G(x,) 0)]
Thus the inequality x, < x, is equivalent to
_ |Wf|oo> 1<Vf|w>
H'([——=\G =1 17
(o ol )” 1

where f: R — R is continuous, even and integrable with £(0) f(0) <O0.
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~

It remains to consider functions f'such that f(0) f(0) > 0. Fix « such that
1/2A<oc< 1; Given such an £, define F(x)=af(x/2)— f(x). Then F(&)=
2af(2¢) — f(<) and

F(0) F(0)=(—1)(2x—1) £(0) £(0)<0.
Applying (17) to F and observing that
IWF| o <(«Co+ 1) [ WSl . [1VEI, <+ 1) |V

and that ' and G~ are increasing functions, we obtain

(e (o )

where 4, = (aCy+1)(2a— 1)~ and B, = (2a+1)(1 —a)~ L.

Finally, we define ®&(t)=H ~'(A,t), ¥(t)=G ' (B,t). Since 4, and B,
are both greater than one, (17) shows that (18) also holds whenever
£(0) £(0)<0. Trivially, (18) holds when £(0) £(0)=0. Q.E.D.
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